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Abstract. The phenomenon of quantum nucleation is studied in a nanometer-scale antiferromagnet with
biaxial symmetry in the presence of a magnetic field at an arbitrary angle. Within the instanton approach,
we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orien-
tation and strength of the field for bulk solids and two-dimensional films of antiferromagnets, respectively.
Our results show that the rate of quantum nucleation and the crossover temperature from thermal-to-
quantum transitions depend on the orientation and strength of the field distinctly, which can be tested
with the use of existing experimental techniques.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 73.40.Gk Tunneling – 75.30.Gw
Magnetic anisotropy – 75.50.Ee Antiferromagnetics

One of the most striking manifestations of the quantum
character of nature is quantum tunneling of particles. Fol-
lowing the idea suggested by Caldeira and Leggett [1], the
tunneling of macroscopic object, known as Macroscopic
Quantum Tunneling (MQT), has become one of the most
fascinating phenomena in condensed matter physics. Dur-
ing the last decade, the problem of quantum tunneling of
magnetization in nanometer-scale magnets has attracted a
great deal of theoretical and experimental interest [2]. The
magnetic MQT includes quantum reversal of the magne-
tization (or the Néel) vector in small single-domain fer-
romagnets (or antiferromagnets), quantum nucleation of
magnetic bubbles, quantum depinning of domain walls
from defects in bulk magnets, and resonant spin tunnel-
ing in molecular magnetic clusters [2]. MQT in magnetic
systems are interesting from a fundamental point of view
as it can extend our understanding of the limits between
quantum and classical physics. On the other hand, MQT
is important to the reliability of small magnetic units in
memory devices and the designing of quantum computers
in the future. And the measurement of magnetic MQT
quantities such as the tunneling rates could provide inde-
pendent information about microscopic parameters such
as the magnetocrystalline anisotropies and the exchange
constants. All this makes magnetic quantum tunneling an
exciting area for theoretical research and a challenging ex-
perimental problem.

The problem of quantum nucleation of a stable phase
from a metastable one in ferromagnetic films is an
interesting fundamental problem which allows direct
comparison between theory and experiment [3]. Consider a
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ferromagnetic film with its plane perpendicular to the easy
axis determined by the magnetocrystalline anisotropy en-
ergy depending on the crystal symmetry. A magnetic field
H is applied in a direction opposite to the initial easy di-
rection of the magnetization M, which favors the reversal
of the magnetization. The reversal occurs via the nucle-
ation of a critical bubble, which then the nucleus does not
collapse, but grows unrestrictedly in volume. If the tem-
perature is sufficiently high, the nucleation of a bubble
is a thermal overbarrier process, and the rate of thermal
nucleation follows the Arrhenius law ΓT exp (−U/kBT ),
with kB being the Boltzmann constant and U being the
height of energy barrier. In the limit of T → 0, the nucle-
ation is purely quantum-mechanical and the rate goes as
ΓQ exp (−Scl/~), with Scl being the classical action or the
WKB exponent which is independent of temperature. Be-
cause of the exponential dependence of the thermal rate
on T , the temperature Tc characterizing the crossover
from quantum to thermal regime can be estimated as
kBTc = ~U/Scl.

A few theoretical studies of the problem of quantum
nucleation have been around for some time. Privorotskii
estimated the exponent in the rate of quantum nucleation
based on the dimensional analysis [4]. Chudnovsky and
Gunther studied the quantum nucleation of a thin ferro-
magnetic film in a magnetic field along the opposite di-
rection to the easy axis at zero temperature by applying
the instanton method [5]. Later, Ferrera and Chudnovsky
extended the quantum nucleation to a finite tempera-
ture [6]. Kim studied the effect of an arbitrarily directed
magnetic field on the quantum nucleation of magnetiza-
tion [7]. The phenomenon of quantum nucleation was also
found in nanometer-scale antiferromagnets [8–10], where
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the Néel vector is the tunneling entity. Theoretical stud-
ies on small single-domain antiferromagnets showed that
quantum tunneling should show up at higher tempera-
tures and higher frequencies than in single-domain ferro-
magnets of similar size [2]. This makes nanometer-scale
antiferromagnets more interesting for experimental test.

Up to now theoretical studies on quantum nucleation
in antiferromagnets [8–10] were confined to the condition
that the metastable state is caused by the magnetocrys-
talline anisotropy, which is not easily controlled in exper-
iments. It is well-known that a magnetic field is a good
external parameter to make the phenomenon of MQT ob-
servable. The purpose of this paper is to extend the pre-
vious considerations [8–10] to a system with a magnetic
field applied in an arbitrary direction between perpen-
dicular and opposite to the initial easy axis (ẑ-axis). By
applying the instanton method in the spin-coherent-state
path-integral representation, we present the numerical re-
sults for the WKB exponent in quantum nucleation of a
thin ferromagnetic film with the magnetic field applied in
a range of angles π/2 < θH < π and θH = π respec-
tively, where θH is the angle between the initial easy axis
(ẑ-axis) and the field. We also discuss the θH dependence
of the crossover temperature Tc from purely quantum nu-
cleation to thermally assisted processes. Our results show
that the distinct angular dependence, together with the
dependence of the WKB exponent on the strength of the
external magnetic field, may provide an independent ex-
perimental test for quantum nucleation in an antiferro-
magnetic film.

For a spin tunneling problem, the rate of magnetiza-
tion reversal by quantum tunneling can be determined by
the imaginary-time transition amplitude from an initial
state |i〉 to a final state |f〉 as

Ufi = 〈f | e−HT |i〉 =
∫
D{M (r, τ)} exp (−SE/~) , (1)

where SE is the Euclidean action which includes the Eu-
clidean Lagrangian density LE as

SE =
∫

dτd3rLE. (2)

The system of interest is an antiferromagnet of about 5–
10 nm in radius at a temperature well below its anisotropy
gap. According to the two-sublattice model [8], there is
a strong exchange energy m1 ·m2/χ⊥ between two sub-
lattices, where m1 and m2 are the magnetization vec-
tors of the two sublattices with large, fixed and unequal
magnitudes, and χ⊥ is the transverse susceptibility. In
the semiclassical regime and using the spin-coherent-state
path-integral, one gets the Euclidean Lagrangian den-
sity for antiferromagnets (neglecting dissipation with the

environment) as [8–10]

LE[θ(r, τ), φ(r, τ)] = i
m1 +m2

γ

(
dφ
dτ

)
− i

m

γ

(
dφ
dτ

)
cos θ

+
χ⊥
2γ2

[(
dθ
dτ

)2

+
(

dφ
dτ

)2

sin2 θ

]

+
1
2
α
[
(∇θ)2 + (∇φ)2 sin2 θ

]
+E(θ, φ), (3)

where γ is the gyromagnetic ratio, α is the exchange con-
stant [11], and τ = it is the imaginary-time variable. The
E(θ, φ) term includes the magnetocrystalline anisotropy
and the Zeeman energies. m = m1−m2 = ~γs, where s is
the excess spin due to the noncompensation of two sublat-
tices. The polar coordinate θ and the azimuthal coordinate
φ in the spherical coordinate system with l · ẑ = cos θ, l
is the Néel vector of unit length and ẑ is a unit vector
along the z-axis. The first term in equation (3) is a to-
tal imaginary-time derivative, which has no effect on the
classical equations of motion, but it is crucial for the spin-
parity effects [2,8,12–18]. However, for the closed instan-
ton trajectory described in this paper (as shown in the
following), this time derivative gives a zero contribution
to the path integral, and therefore can be omitted. In the
semiclassical limit, the rate of quantum nucleation, with
an exponential accuracy, is given by

ΓQ exp
[
−Smin

E /~
]
, (4)

where Smin
E is obtained along the trajectory that mini-

mizes the Euclidean action SE.
In this paper, we study the quantum nucleation of the

Néel vector in antiferromagnets with biaxial symmetry in
the presence of a magnetic field at arbitrary angles in
the ZX plane, which has the following magnetocrystalline
anisotropy energy

E (θ, φ) = K1 sin2 θ +K2 sin2 θ sin2 φ

−mHx sin θ cosφ−mHz cos θ, (5)

where K1 and K2 are the longitudinal and the transverse
anisotropy coefficients respectively, and K1 > 0. In the
absence of the magnetic field, the easy axes of this system
are ±ẑ for K1 > 0. And the field is applied in the ZX
plane at π/2 < θH < π. By introducing the dimensionless
parameters as

K2 = K2/2K1, Hx = Hx/H0, Hz = Hz/H0. (6)

Equation (5) can be rewritten as

E (θ, φ) =
1
2

sin2 θ +K2 sin2 θ sin2 φ

−Hx sin θ cosφ−Hz cos θ +E0, (7)

where E (θ, φ) = 2K1E (θ, φ), and H0 = 2K1/m. At finite
magnetic field, the plane given by φ = 0 is the easy plane,
on which E (θ, φ) reduces to

E (θ, φ = 0) =
1
2

sin2 θ −H cos (θ − θH) . (8)
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We denote θ0 to be the initial angle and θc the crit-
ical angle at which the energy barrier vanishes when
the external magnetic field is close to the critical value
Hc (θH) (to be calculated in the following). Then, the
initial angle θ0 satisfies

[
dE (θ, φ = 0) /dθ

]
θ=θ0

= 0,
the critical angle θc and the dimensionless critical field
Hc satisfy both

[
dE (θ, φ = 0) /dθ

]
θ=θc,H=Hc

= 0 and[
d2E (θ, φ = 0) /dθ2

]
θ=θc,H=Hc

= 0, which leads to

1
2

sin (2θ0) +H sin (θ0 − θH) = 0, (9a)

1
2

sin (2θc) +Hc sin (θc − θH) = 0, (9b)

cos (2θc) +Hc cos (θc − θH) = 0. (9c)

After some algebra, the dimensionless critical field
Hc (θH) and the critical angle θc are found to be

Hc =
[
(sin θH)2/3 + |cos θH |2/3

]−3/2

, (10a)

sin (2θc) =
2 |cot θH |1/3

1 + |cot θH |2/3
· (10b)

Then the critical field of this system is Hc = Hc (2K1/m),
where m = ~γs/V , and s is the excess spin of antiferro-
magnet due to the noncompensation of two sublattices.

It is noted that for the nanometer-scale antiferromag-
net at finite magnetic field, there exists another field
Hs.f., known as the spin-flop field, which can rotate the
moments of sublattices away from the anisotropy axis.
The spin-flop field is defined as Hs.f. =

√
2H1Hex, with

H1 = 2K1/m1 being the longitudinal anisotropy field,
and Hex = 2Jex/m1 being the exchange field between
two sublattices. m1 = ~γS/V is the magnetization of
one sublattice, where S is the sublattice spin. Typical
values of parameters for the antiferromagnetic nanopar-
ticle are K1 v 105 erg/cm3 and χ⊥ v 10−5 emu/G cm3.
The particle radius is about 12 nm, the sublattice spin is
S = 2 × 105, and the excess spin is s = 103. It is easy
to obtain that the exchange energy density between sub-
lattices is Jex

(
= ~2γ2S2/V 2χ⊥

)
≈ 1.9 × 1010 erg/cm3,

H0 (= 2K1/m) ≈ 9.0 × 104 G, and Hs.f. ≈ 2.8 × 105 G,
which shows that the critical field is smaller than the spin-
flop field. Therefore, the small ε = 1−H/Hc limit can be
performed in calculating the rate of quantum nucleation
of the Néel vector, at which the two-sublattice configura-
tion is still valid for antiferromagnets at finite magnetic
field.

Now we consider the limiting case that the external
applied magnetic field is slightly lower than the criti-
cal field, i.e., ε = 1 − H/Hc � 1. At this practically
interesting situation, the barrier height is low and the
width is narrow, and therefore the tunneling rate is large.
Introducing η ≡ θc − θ0 (|η| � 1 in the limit of ε� 1),
expanding

[
dE (θ, φ = 0) /dθ

]
θ=θ0

= 0 about θc, and
using the relations

[
dE (θ, φ = 0) /dθ

]
θ=θc,H=Hc

= 0
and

[
d2E (θ, φ = 0) /dθ2

]
θ=θc,H=Hc

= 0, equation (9a)

becomes

sin (2θc)
(
ε− 3

2
η2

)
− η cos (2θc)

(
2ε− η2

)
= 0. (11)

Simple calculations show that η is of the order of√
ε. Thus the order of magnitude of the second term in

equation (11) is smaller than that of the first term by√
ε and the value of η is determined by the first term,

which leads to η '
√

2ε/3. However, when θH is very
close to π/2 or π, sin (2θc) becomes almost zero, and the
first term is much smaller than the second term in equa-
tion (11). Then η is determined by the second term when
θH ' π/2 or π, which leads to η '

√
2ε for θH ' π/2

and η ' 0 for θH ' π. Since the first term in equa-
tion (11) is dominant in the range of values, θc, which
satisfies tan (2θc) > O (

√
ε), η '

√
2ε/3 is valid for

π/2 +O (
√
ε) < θH < π−O (

√
ε) by using equation (10b).

Therefore, η '
√

2ε, 0, and
√

2ε/3 for θH ' π/2, π, and
π/2 + O (

√
ε) < θH < π − O (

√
ε), respectively. In this

case the potential energy E (θ, φ) reduces to the following
equation in the limit of small ε,

E (δ, φ) = K2 sin2 φ sin2 (θ0 + δ)

+Hx sin (θ0 + δ) (1− cosφ) +E1 (δ) , (12)

where δ ≡ θ − θ0 (|δ| � 1 in the limit of ε� 1), and
E1 (δ) is a function of only δ given by

E1 (δ) =
1
4

sin (2θc)
(
3δ2η − δ3

)
+

1
2

cos (2θc)
[
δ2

(
ε− 3

2
η2

)
+ δ3η − 1

4
δ4

]
.

(13)

It can be shown that in the region of π/2 + O (
√
ε) <

θH < π − O (
√
ε), O (

√
ε) < θc < π/2 − O (

√
ε), η and δ

are of the order of
√
ε, the second term in equation (13)

is smaller than the first term in the small ε limit. It is
convenient to use the dimensionless variables

r′ = ε1/4r/r0, τ ′ = ε1/4ω0τ, δ = δ/
√
ε, (14a)

where r0 =
√
α/2K1, and

ω0 =
2γK1

m

(
sin θc

Hx + 2K2 sin θc

+
2χ⊥K1

m2

)−1/2

. (14b)
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Then the Euclidean action (2) for π/2 + O (
√
ε) < θH <

π −O (
√
ε) becomes

SE

[
δ (r′,τ ′),φ (r′, τ ′)

]
=
r3
0

εω0

∫
dτ ′d3r′

{
χ⊥
2γ2

ε3/2ω2
0

(
∂δ

∂τ ′

)2

+
χ⊥
2γ2

ε1/2ω2
0 sin2

(
θ0 +

√
εδ
)( ∂φ

∂τ ′

)2

−i
m

γ
εω0 sin

(
θ0 +

√
εδ
)
φ

(
∂δ

∂τ ′

)
+ 2K1

[
K
′
2 sin2 φ sin2

(
θ0 +

√
εδ
)

+ 2Hx sin2

(
φ

2

)
sin
(
θ0 +

√
εδ
)

+
1
2
ε3/2

(
∇′δ
)2

+
1
2
ε1/2 sin2

(
θ0+
√
εδ
)

(∇′φ)2+
A

4
ε3/2

(√
6δ

2−δ3
) ]}

,

(15)

where A = sin (2θc). In equation (15) we have performed
the integration by part for the term −imγ cos θ

(
dφ
dτ

)
and

have neglected the total imaginary-time derivative. In can
be showed that for π/2 +O (

√
ε) < θH < π−O (

√
ε), only

small values of φ contribute to the path integral, so that
one can replace sin2 φ in equation (15) by φ2 and neglect
the term including (∇′φ)2 which is of the order ε2 while
the other terms are of the order ε3/2. Then the Gaussian
integration over φ leads to∫

D{δ (r′, τ ′)} exp
(
−1
~
Seff

E

)
, (16)

where the effective action is

Seff
E

[
δ (r′, τ ′)

]
= ~sε1/2r3

0

(
sin θc

Hx + 2K2 sin θc

+
2χ⊥K1

m2

)1/2 ∫
dτ ′d3r′

[
1
2

(
∂δ

∂τ ′

)2

+
1
2
(
∇′δ

)2
+
A

4

(√
6δ

2 − δ3
)]

, (17)

and s = m/~γ is the excess spin of antiferromagnets. In-
troducing the variables τ = τ ′

√
A and r = r′

√
A, the

effective action (17) is simplified as

Seff
E

[
δ (r, τ)

]
= ~sε1/2r3

0

1
A

(
sin θc

Hx + 2K2 sin θc

+
2χ⊥K1

m2

)1/2 ∫
dτd3r

[
1
2

(
∂δ

∂τ

)2

+
1
2
(
∇δ
)2

+
1
4

(√
6δ

2 − δ3
)]

.
(18)

For the quantum reversal of the Néel vector in a small
particle of volume V � r3

0, the Néel vector is uniform

within the particle and δ does not depend on the space r.
In this case equation (18) reduces to

Seff
E

[
δ(r,τ)

]
=~sε5/4

√
AV

(
sin θc

Hx+2K2 sin θc

+
2χ⊥K1

m2

)1/2

×
∫

dτ

[
1
2

(
dδ
dτ

)2

+
1
4

(√
6δ

2 − δ3
)]

.

(19)

The corresponding classical trajectory satisfies the equa-
tion of motion

d2δ

dτ2 =
1
2

√
6δ − 3

4
δ

2
. (20)

Equation (20) has the instanton solution

δ (τ) =
√

6
cosh2

(
31/4 × 2−5/4τ

) , (21)

corresponding to the variation of δ from δ = 0 at τ = −∞,
to δ =

√
6ε at τ = 0, and then back to δ = 0 at τ = ∞.

The associated classical action is found to be

Scl =
217/4 × 31/4

5
~sε5/4

|cot θH |1/6√
1 + |cot θH |2/3

×

 1 + |cot θH |2/3

1− ε+ 2K2

(
1 + |cot θH |2/3

) +
2χ⊥K1

m2

1/2

.

(22)

In the WKB approximation, the tunneling rate Γ of a
particle escaping from a metastable state has the relation
Γ exp (−B/~). The WKB exponent B is approximately
given by U/ωb, where U is the height of barrier, and ωb is
the frequency of small oscillations around the minimum of
the inverted potential and characterizes the width of the
barrier hindering the decay process. For magnetic quan-
tum tunneling, ω2

b

(
≡ −E′′1 (δm) /M

)
is inversely propor-

tional to the effective mass of the magnets, where the mass
is induced by the transverse component of magnetic field,
and δm corresponds to the position of the minimum of
the inverted potential. For general case, the WKB expo-
nent B should be proportional to the power of the pa-
rameter ε = 1 −H/Hc since the height and the width of
barrier are proportional to the power of ε. Simple anal-
ysis of equation (8) shows that the value of ε should be
small in order to obtain a large tunneling rate. For this
case, we obtain the height of barrier as E1 (= U/2K1V ) =
sin (2θc) (6ε)3/2

/27 at δm = 2
√

6ε/3 and the oscillation
frequency around the minimum of the inverted potential
−E1 (δ) as ωb = 2−1/4×31/4ε1/4ω0

√
sin (2θc), where ω0 is

shown in equation (14b). Then we approximately obtain
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the WKB exponent B as

B ∼ U

ωb
=

29/4

37/4
~sε5/4

|cot θH |1/6√
1 + |cot θH |2/3

×

 1 + |cot θH |2/3

1− ε+ 2K2

(
1 + |cot θH |2/3

) +
2χ⊥K1

m2

1/2

,

(23)

which agrees up to the numerical factor with the result
in equation (22) obtained by using the explicit instanton
solution.

For a large non-compensation
(
m�

√
χ⊥K1

)
, equa-

tion (23) reduces to

SFM
cl =

217/4×31/4

5
~sε5/4V

|cot θH |1/6√
1−ε+2K2

(
1+|cot θH |2/3

) ,
(24)

which agrees well with the result of quantum tunnel-
ing of magnetization in single-domain ferromagnetic par-
ticles with biaxial symmetry in an arbitrarily directed
field [19]. For a small non-compensation

(
m�

√
χ⊥K1

)
,

equation (23) reduces to the result for single-domain an-
tiferromagnetic particles,

SAFM
cl =

217/4 × 31/4

5

√
χ⊥K1

γ
V ε5/4

|cot θH |1/6√
1 + |cot θH |2/3

,

(25)

which is in good agreement with the result in refer-
ences [20,21].

Now we turn to the nonuniform problem. In case of a
thin film of thickness h less than the size r0/ε1/4 of the
critical nucleus and its plane is perpendicular to the initial
easy axis, we obtain the effective action after performing
the integration over the z variable in equation (19),

Seff
E

[
δ (r, τ)

]
= ~sε3/4r2

0h

×
√

1
A

(
sin θc

Hx+2K2 sin θc

+
2χ⊥K1

m2

)1/2

×
∫

dτd2r

[
1
2

(
∂δ

∂τ

)2

+
1
2
(
∇δ
)2

+
1
4

(√
6δ

2 − δ3
)]

. (26)

At zero temperature the classical solution of the effec-
tive action (26) has O (3) symmetry in two spatial plus
one imaginary time dimensions. Therefore, the solution
δ is a function of u, where u =

(
ρ2 + τ2

)1/2, and ρ =(
x2 + y2

)1/2 is the normalized distance from the z-axis.

0 1 2 3 4 5
0
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7
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0
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3

4

5
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7

δ

ρ

 τ=0
 τ=0.5
 τ=1
 τ=2

Fig. 1. The instanton, corresponding to subbarrier bubble for-
mation in a thin film by quantum tunneling in a magnetic field
with π/2 < θH < π, for τ = 0, τ = ±0.5, τ = ±1, and τ = ±2.

Now the effective action (26) becomes

Seff
E

[
δ (r, τ)

]
= 4π~sε3/4r2

0h

×
√

1
A

(
sin θc

Hx + 2K2 sin θc

+
2χ⊥K1

m2

)1/2

×
∫

duu2

[
1
2

(
dδ
du

)2

+
1
4

(√
6δ

2 − δ3
)]

.

(27)

The corresponding classical trajectory satisfies the equa-
tion of motion

d2δ

du2
+

2
u

dδ
du

=
√

6
2
δ − 3

4
δ

2
. (28)

By applying the similar method [5,7], the instanton so-
lution of equation (28) can be found numerically and is
illustrated in Figure 1. The maximal rotation of the Néel
vector is δmax ≈ 6.8499 at τ = 0 and ρ = 0. Numerical
integration in equation (27), using this solution, gives the
rate of quantum nucleation for a thin antiferromagnetic
film as

ΓQ exp (−SE/~) = exp

{
− 74.39sε3/4r2

0h

×

√
1 + |cot θH |2/3

|cot θH |1/6

×

 1 + |cot θH |2/3

1− ε+ 2K2

(
1 + |cot θH |2/3

) +
2χ⊥K1

m2

1/2}
.

(29)
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For a large non-compensation, equation (29) reduces to
the result for quantum nucleation in a thin ferromagnetic
film

ΓQ exp
(
−SFM

E /~
)

= exp

{
− 74.39sε3/4r2

0h

× 1 + |cot θH |2/3

|cot θH |1/6
√

1− ε+ 2K2

(
1 + |cot θH |2/3

)
}
. (30)

For a small non-compensation, equation (29) reduces to
the result for quantum nucleation in a thin antiferromag-
netic film

ΓQ exp
(
−SAFM

E /~
)

= exp

{
− 105.2

√
χ⊥K1

γ

× ε3/4r2
0h

√
1 + |cot θH |2/3

|cot θH |1/6

}
.

(31)

At high temperature, the nucleation of the Néel vector
is due to thermal activation, and the rate of nucleation
follows ΓT exp (−Wmin/kBT ), where Wmin is the minimal
work necessary to produce a nucleus capable of growing.
In this case the instanton solution becomes independent
of the imaginary-time variable τ . In order to obtain Wmin,
we consider the effective potential of the system

Ueff =
∫

d3r
[α

2

(
(∇θ)2 + sin2 θ (∇φ)2

)
+E (θ, φ)

]
.

(32)

For a cylindrical bubble equation (32) becomes

Ueff = 4πK1εr
2
0

∫ ∞
0

dρρ

[
1
2

(
dδ
dρ

)2

+
1
4

(√
6δ

2 − δ3
)]

.

(33)

From the saddle point of the functional the shape of the
critical nucleus satisfies

d2δ

dρ2 +
1
ρ

dδ
dρ

=
√

6
2
δ − 3

4
δ

2
. (34)

The solution can be found by numerical method similar
to the one in references [5,7]. Figure 2 shows the shape of
the critical bubble in thermal nucleation, and the maximal
size is 3.906 at ρ = 0. Using this result, the minimal work
corresponding the thermal nucleation is

Wmin = 41.3376K1εr
2
0h. (35)

Comparing this with equation (29), we obtain the ap-
proximate formula for the temperature characterizing the
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δ

ρ

Fig. 2. The shape of the critical bubble in a thermal nucleation
of magnetization in a magnetic field with π/2 < θH < π.

crossover from thermal to quantum nucleation as

kBTc ≈ 0.55
K1ε

1/4

s

|cot θH |1/6√
1 + |cot θH |2/3

×

 1 + |cot θH |2/3

1− ε+ 2K2

(
1 + |cot θH |2/3

) +
2χ⊥K1

m2

−1/2

.

(36)

For the FM case, i.e., the case of large non-compensation,
the crossover temperature is

kBT
FM
c ≈ 0.55

K1ε
1/4

s

|cot θH |1/6√
1− ε+ 2K2

(
1 + |cot θH |2/3

) ·
(37)

While for the AFM case, i.e., the case of small non-
compensation,

kBT
AFM
c ≈ 0.39~γ

√
K1

χ⊥
ε1/4

|cot θH |1/6√
1 + |cot θH |2/3

· (38)

To observe the quantum nucleation one needs a large
crossover temperature and not too small a nucleation
rate. Note that χ⊥ = m2

1/Jex and m1 = ~γS where Jex

is the exchange interaction between two sublattices and
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Fig. 3. The θH dependence of the crossover temperature Tc for
π/2 < θH < π. Here, K1 = 107 erg/cm3, Jex = 1010 erg/cm3,
K2 = 1, m = 10 emu/cm3, S/s = 100, and ε = 0.01.

S is the sublattice spin, equation (36) can be written as

kBTc ≈ 0.55
K1ε

1/4~γ
m

|cot θH |1/6√
1 + |cot θH |2/3

×

 1+|cot θH |2/3

1−ε+2K2

(
1+|cot θH |2/3

)+2
(
S

s

)2(
K1

Jex

)−1/2

.

In Figure 3, we plot the θH dependence of the crossover
temperature Tc for typical values of parameters for
nanometer-scale antiferromagnets: K1 = 107 erg/cm3,
Jex = 1010 erg/cm3, K2 = 1, m = 10 emu/cm3, S/s =
100, ε = 0.01 in a wide range of angles π/2 < θH < π.
Figure 3 shows that the maximal value of Tc is about
1.916 K at θH = 2.350, which is one or two orders of
magnitude higher than that for ferromagnets with a sim-
ilar size [5,7]. Note that, even for ε as small as 10−3,
the angle corresponding to an appreciable change of the
orientation of the Néel vector by quantum tunneling is
δ2 =

√
6ε rad> 4◦. The maximal value of Tc as well as ΓQ

is expected to be observed in experiment.

Now we study the situation that the magnetic field is
applied opposite to the initial easy axis, i.e., θH = π. In
this case, θ0 = θc = 0, Hx = 0, and η = 0 from equa-
tions (10a, 10b). By using the dimensional variables r′ =
ε1/2r/r0, τ ′ = ε1/2ω0τ , δ = δ/

√
ε, where r0 =

√
α/2K1,

and

ω0 =
2γK1

m

(
1

2K2

+
2χ⊥K1

m2

)−1/2

,

we obtain the Euclidean action as

SE

[
δ (r′, τ ′) , φ (r′, τ ′)

]
=

r3
0

ε2ω0

∫
dτ ′d3r′

×
{
χ⊥
2γ2

ε2ω2
0

[(
∂δ

∂τ ′

)2

+ δ
2
(
∂φ

∂τ ′

)2
]

− i
m

γ
ε3/2ω0φδ

(
∂δ

∂τ ′

)
+ 2K1

[
K
′
2εδ

2
φ2

+
1
2
ε2
(
∇′δ
)2

+
1
2
ε2δ

2
(∇′φ)2 +

1
2
ε2

(
δ

2 − δ
4

4

)]}
.

(39)

The Gaussian integration over φ reduces equation (39) to
the following effective action

Seff
E

[
δ (r′, τ ′)

]
=

2K1r
3
0

ω0

∫
dτ ′d3r′

×
[

1
2

(
∂δ

∂τ ′

)2

+
1
2
(
∇′δ
)2

+
1
2

(
δ

2 − δ
4

4

)]
. (40)

In the case of quantum nucleation of the Néel vector
in a small particle of volume V � r3

0, the Néel vector is
uniform within the particle and equation (40) reduces to

Seff
E

[
δ (τ ′)

]
=

2K1

ω0
ε3/2V

∫
dτ ′
[

1
2

(
∂δ

∂τ ′

)2

+
1
2

(
δ

2− δ
4

4

)]
.

(41)

The classical trajectory satisfies the equation of motion

d2δ

dτ ′2
= δ − 1

2
δ

3
, (42)

which has the instanton solution

δ (τ ′) =
2

cosh τ ′
, (43)

corresponding to the variation of δ from δ = 0 at τ = −∞,
to δ = 2

√
ε at τ = 0, and then back to δ = 0 at τ = ∞.

Substituting this solution into equation (41) we obtain
that

Scl =
8
3
~sε3/2V

(
1

2K2

+
2χ⊥K1

m2

)1/2

. (44)

In the case of quantum nucleation in a thin film of thick-
ness h less than the size r0/

√
ε of the critical nucleus with

its plane perpendicular to the initial easy axis, the Eu-
clidean action (39) becomes

Seff
E

[
δ (r′, τ ′)

]
= 4π~ε1/2r2

0h

(
1

2K2

+
2χ⊥K1

m2

)1/2

×
∫

duu2

[
1
2

(
dδ
du

)2

+
1
2

(
δ

2 − δ
4

4

)]
,

(45)
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Fig. 4. The instanton, corresponding to subbarrier bubble for-
mation in a thin film by quantum tunneling in a magnetic field
with θH = π, for τ ′ = 0, τ ′ = ±0.5, τ ′ = ±1, and τ ′ = ±2.

where u2 = ρ′2+τ ′2, and ρ′2 = x′2+y′2. The corresponding
classical equation of motion satisfies

d2δ

du2
+

2
u

dδ
du

= δ − 1
2
δ

3
. (46)

The instanton solution of equation (46) can be found nu-
merically and is illustrated in Figure 4. Numerical integra-
tion in equation (45), using this solution, gives the WKB
exponent for the subbarrier bubble nucleation in an anti-
ferromagnetic film as

ΓQ exp (−SE/~) =

exp

{
−37.797sε1/2r2

0h

(
1

2K2

+
2χ⊥K1

m2

)1/2
}
. (47)

For a cylindrical bubble, the effective potential of the ther-
mal nucleation is found to be

Ueff = 4πK1εr
2
0h

∫ ∞
0

dρ′ρ′
[

1
2

(
dδ
dρ′

)2

+
1
2

(
δ

2 − δ
4

4

)]
,

(48)

wherein the shape of the critical nucleus corresponds to a
saddle point of this functional:

d2δ

dρ′2
+

1
ρ′

dδ
dρ′

= δ − 1
2
δ

3
. (49)

Equation (49) can be solved by the numerical approach,
and the solution is showed in Figure 5. Numerical
integration of this solution in equation (48) gives
ΓT exp (−Wmin/kBT ) with Wmin = 23.402K1εr

2
0h. Then

the crossover temperature is found to be

kBTc ≈ 0.619
K1ε

1/4

s

(
1

2K2

+
2χ⊥K1

m2

)−1/2

. (50)
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Fig. 5. The shape of the critical bubble in a thermal nucleation
of magnetization in a magnetic field with θH = π.

In conclusion, we have investigated the quantum nu-
cleation of the Néel vector in nanometer-scale antiferro-
magnets with biaxial symmetry in the presence of an ex-
ternal magnetic field at arbitrary angle. By applying the
instanton method in the spin-coherent-state path-integral
representation, we obtain the analytical formulas for quan-
tum reversal of the Néel vector in small magnets and the
numerical formulas for quantum nucleation in thin antifer-
romagnetic film in a wide range of angles π/2 < θH < π,
and θH = π respectively. The temperature characteriz-
ing the crossover from the quantum to thermal nucleation
is clearly shown for each case. Our results show that the
rate of quantum nucleation and the crossover temperature
depend on the orientation of the external magnetic field
distinctly. When θH = π, the magnetic field is applied an-
tiparallel to the anisotropy axis. It is found that even a
very small misalignment of the field with the above ori-
entation can completely change the results of tunneling
rates. Another interesting conclusion concerns the field
strength dependence of the WKB exponent or the clas-
sical action in the rate of quantum nucleation. We have
found that in a wide range of angles, the ε

(
= 1−H/Hc

)
dependence of the WKB exponent or the classical ac-
tion Scl is given by ε5/4, not ε3/2 for θH = π. There-
fore, both the orientation and the strength of the external
magnetic field are the controllable parameters for the ex-
perimental test of quantum nucleation of the Néel vector
in nanometer-scale antiferromagnets. If the experiment is
to be performed, there are three control parameters for
comparison with theory: the angle of the external mag-
netic field θH , the strength of the field in terms of ε, and
the temperature T .

Recently, Wernsdorfer and co-workers have per-
formed the switching field measurements on individual
ferrimagnetic and insulating BaFeCoTiO nanoparticles
containing about 105–106 spins at very low temperatures
(0.1–6 K) [22]. They found that above 0.4 K, the mag-
netization reversal of these particles is unambiguously
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described by the Néel-Brown theory of thermal activated
rotation of the particle’s moment over a well defined
anisotropy energy barrier. Below 0.4 K, strong deviations
from this model are evidenced which are quantitatively
in agreement with the predictions of the MQT theory
without dissipation [19,23]. It is noted that the obser-
vation of quantum nucleation of ferromagnetic or anti-
ferromagnetic bubbles would be extremely interesting as
the next example, after single-domain nanoparticles, of
macroscopic quantum tunneling. The experimental pro-
cedures on single-domain ferromagnetic nanoparticles of
Barium ferrite with uniaxial symmetry [22] may be ap-
plied to the antiferromagnetic systems. Note that the in-
verse of the WKB exponent B−1 is the magnetic viscosity
S at the quantum-tunneling-dominated regime T � Tc

studied by magnetic relaxation measurements [2]. There-
fore, the quantum nucleation of the antiferromagnetic
bubbles should be checked at any θH by magnetic relax-
ation measurements. Over the past years a lot of experi-
mental and theoretical works were performed on the spin
tunneling in molecular Mn12 -Ac [24] and Fe8 [25] clus-
ters having a collective spin state S = 10 (in this paper
S = 106). Recent progresses in the field of molecular mag-
nets include the measurements of the spin-lattice relax-
ation rate [30], the specific heat and the Ac-susceptibility
on Mn12-Ac [31], the studies of energy sublevels of the
ground state by inelastic neutron scattering (INS) [32] and
the zero-field magnetic relaxation of Mn12-Ac [33], and the
model calculation of the magnetization relaxation based
on phonon-assisted tunneling on Mn12-Ac [34]; the INS
experiment on Fe8 [35], the measurement of effects of nu-
clear spins on the magnetic relaxation of Fe8 [36], and the
nonadiabatic Landau-Zener tunneling in Fe8 [37,38]. Fur-
ther experiments should focus on the level quantization of
collective spin states of S = 102–104.

The ferromagnet or antiferromagnet is typically an
insulating particle with as many as 103–106 magnetic mo-
ments. For the dynamical process, it is important to in-
clude the effect of the environment on quantum tunnel-
ing caused by phonons [26,27], nucleation spins [28], and
Stoner excitations and eddy currents in metallic mag-
nets [29]. However, many studies showed that even though
these couplings might be crucial in macroscopic quantum
coherence, they are not strong enough to make the quan-
tum tunneling unobservable [2,26–29]. The theoretical cal-
culations performed in this paper can be extended to the
antiferromagnetic systems with more general symmetries,
such as trigonal, tetragonal and hexagonal symmetries.
We hope that the theoretical results presented in this pa-
per may stimulate more experiments whose aim is observ-
ing quantum nucleation in nanometer-scale magnets.
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